

Features

- Measuring range of atmosphere to 10⁻⁴ mbar
- Silicon Micromachining Technology
- TO-5 Housing
- Small Time Constant
- For use in reactive gas atmosphere there is a version with protective coating available

Applications

- Pirani Gauges
- Industrial Application
- Gas Analysis Mass Spectrometry
- Vacuum Pumping Systems

VPS025A VPS025P

Vacuum Pressure Sensor

Product Description

Tel: 020-34387714

The sensor element consists of a silicon chip with a thin membrane approximately 1mm^2 in size of a material with extremely good electrical and thermal insulating properties. On the membrane are two thin film resistors $(R_{m1},\,R_{m2})$ which are both used for heating the membrane and for measurement of membrane temperature T_m . The resistors are passivated to protect them from the effects of the gas. The membrane is completely covered by a second small silicon chip with a rectangular cavity etched in. The hollow space thus formed above the membrane is the thermal conductivity section. The gas comes to the measuring section through a small lateral opening in the membrane cover by diffusion only, and not by flow.

The sensor chip and its cover are attached to a silicon support which also permits gas exchange to the lower side of the membrane. The sensor is electrically connected to an eight-pin base by gold wire bonding.

Due to the residual gas surrounding the membrane, thermal energy is dissipated from the membrane held at higher temperature $T_{\text{m}}.$ Measured is the signal needed in a temperature stabilization circuit to keep the excess temperature of the membrane ΔT constant.

On the solid part of the chip are two more resistors (R_{t1} , R_{t2}) to measure and compensate for the effect of the ambient temperature ϑ .

The die stack is mounted on top of a TO-39 header with welding projection flange to be welded directly inside a third-party housing.

For use in reactive gas atmosphere there is the version of VPS025P. The whole silicon stack is covered with a thin film of special coating to make it robust against silicon etching gases.

Specifications

Absolute Maximum Ratings

Recommended Operating Conditions

 $\begin{array}{lll} \mbox{Heating power} & P \; (R_{m1} + R_{m2}) & 5 \; mW \\ \\ \mbox{Membrane excess} & \Delta T = T_M - \vartheta & +50 \; ^{\circ}C \\ \mbox{temperature} & \end{array}$

The minimum ΔT for any application is determined by the resolution of thermal conductivity λ required in combination with the noise of the amplifier circuit used. A very low ΔT has advantages in terms of linearity, low drift and better long-term stability of the sensor.

Parameter Specifications

Base Material

Resistances Heater	$R_{m1}; R_{m2}$	100 +15/-8 Ω	at +25 °C
Resistances Difference Heaters	R_{m1} - R_{m2}	+2.00 Ω	at +25 °C
Resistances Ambient Temperature Sensor	R _{t1} ; R _{t2}	240 +35/-20 Ω	at +25 °C
Resistance Ration	$R_{tx/}(R_{m1} + R_{m2})$	1.20 ± 0.07	$x \in \{1; 2\}$
Temperature Coefficient of Resistance R_{tx} ; R_{mx}	α	5500 +400/-700 ppm/K	at 20 °C ↔ 100 °C
Geometry Factor	G	3.6 mm The factor G is determined by the internal sensor geometry.	
Membrane thermal time constant	τ_{M}	<5 ms	
Protective Coating Thickness		1.20 ± 0.12 μm	for G-VPSCO-004 "VPS025P" only
Non Coated Area		1.8 mm	pins from bottom of sensor base downwards; for G-VPSCO-004 "VPS025P" only
Distance between membrane and cover cap	G VPS025A	$24.0 \pm 2.0 \ \mu m$	for G-VPSCO-005 "VPS025A"
	g _{VPS025P}	21.6 ± 2.0 μm	for G-VPSCO-004 "VPS025P"
Sangar Dimension		35 mm x 35 mm x 12 mm	Die Stack (excluding Base)
Sensor Dimension		3.5 mm ~ 3.5 mm ~ 1.2 mm	Die Otdok (exoldding base)

Base material for the dies is silicon.

Tel: 020-34387714

Electrical Connections

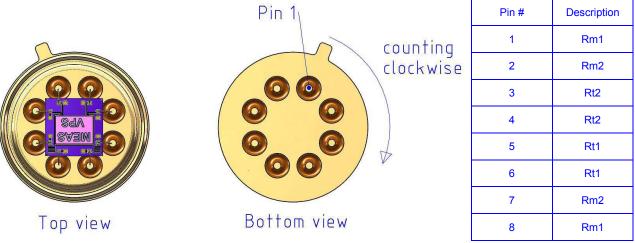


Figure 1: Pin assignment of electrical connections to top and bottom view of sensor

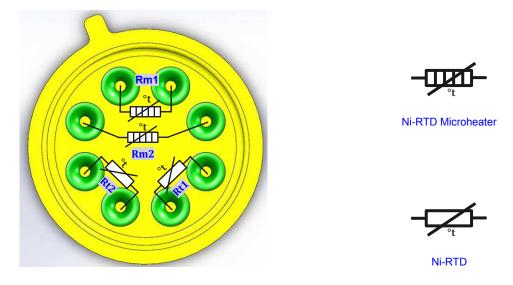


Figure 2: Equivalent Circuit Diagramm

Tel: 020-34387714

Mechanical Dimensions

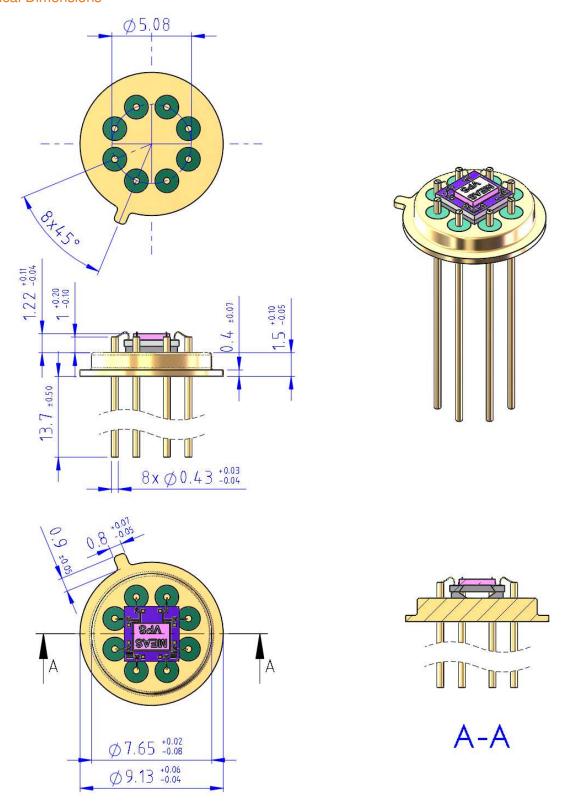


Figure 3: Mechanical dimensions of sensor – all dimensions in mm

Tel: 020-34387714